Nick Schlag
Nick Schlag provides technical leadership on projects involving resource planning and procurement for utilities and public agencies throughout western North America. He has managed some of E3’s highest-profile projects, including a study of gas-electric coordination in the Western Interconnection commissioned by the Western Interstate Energy Board as well as the Western Interconnection Flexibility Assessment, a collaboration with the National Renewable Energy Lab to investigate how high penetrations of renewables in the Western Interconnection would impact system operations.
Nick developed and maintains E3’s RPS Calculator, which the California Public Utilities Commission and other entities use to create and analyze renewables portfolios to meet the requirements of the state’s Renewables Portfolio Standard. He is currently leading E3’s work with the CPUC to implement an integrated resource planning framework in California.
Nick is excited to contribute to an intelligent transition to a cleaner, more sustainable grid. He enjoys exploring the challenges of planning and operating a grid with high renewable penetrations, mapping potential solutions, and developing new techniques for understanding an electric system that looks radically different from today’s. While his work is impressive, we are all even more impressed by his career with the San Francisco Bay Area Ultimate Frisbee team Revolver, three-time world champion.
Education: MS, civil and environmental engineering, atmosphere and energy, and BA, earth systems, Stanford University
Publications
- Inputs & Assumptions: 2022-2023 Integrated Resource Planning, CPUC
- Resilience in planning: Its relationship to Reliability and a practical implementation guide
- Every load an island: Requiring hourly matching of clean electricity purchases would raise emissions
- Assessment of Market Reform Options to Enhance Reliability of the ERCOT System
- CPUC IRP Zero-Carbon Technology Assessment
- Capacity and Reliability Planning in the Era of Decarbonization
- Resource Adequacy in the Desert Southwest – Public Webinar
- Resource Adequacy in the Desert Southwest
- The Load-Serving Entity Reliability Obligation: A Market Design Reform to Ensure Electric Reliability in Texas
- Scalable Markets for the Energy Transition: A Blueprint for Wholesale Electricity Market Reform
- Xcel Energy Low Carbon Scenario Analysis: Decarbonizing the Generation Portfolio of Xcel Energy’s Upper Midwest System
- Moving Beyond ‘Rules of Thumb’ for Smart, Cost Effective Storage Deployment
- Long-Run Resource Adequacy Under Deep Decarbonization Pathways for California
- Resource Adequacy in the Pacific Northwest
- National Grid_2018 Pacific NW Scenarios and Sensitivities_Final Report
- Climate Solutions_2018 Pacific NW Scenarios and Sensitivities_Final Report
- Public Generating Pool_2018 Pacific NW Scenarios and Sensitivities_Final Report
- Pacific Northwest Low Carbon Scenario Analysis – Technical Report
- Pacific Northwest Low Carbon Scenario Analysis
- Natural Gas Infrastructure Adequacy: An Electric System Perspective
- Capital Cost Review of Power Generation Technologies: Recommendations for WECC’s 10- and 20-Year Studies
- SB 350 Evaluation and Plan: Renewable Energy Portfolio Analysis
- What Happens in California Does Not Always Stay in California: The Effect of California’s Cap-and-Trade Program on Wholesale Electricity Prices in the Western Interconnection
- Western Interconnection Flexibility Assessment
- I‐5 Corridor Reinforcement Phase 2 Non‐Wires Analysis: Feasibility for Line Deferral
- Investigating a Higher Renewables Portfolio Standard in California: Summary
- Investigating a Higher Renewable Portfolio Standard for California: Full Report
Projects
Integrated Resource Plan Support | Xcel Energy Upper Midwest, 2019
As part of its 2019 Integrated Resource Plan, Xcel Energy retained E3 to conduct two independent analyses to support its IRP: (1) an economy-wide study for the state of Minnesota examining what would be needed to meet deep decarbonization goals throughout the economy (e.g. 80% reductions by 2050); and (2) a portfolio optimization and reliability analysis for Xcel’s portfolio to examine the costs of meeting the utility’s carbon reduction goals (80% reductions by 2030; 100% carbon-free by 2050).
E3’s statewide pathways study provided Xcel with a novel perspective on future electricity loads in the context of an economy-wide carbon reduction effort, showing how decarbonization measures such as building and transportation electrification could lead to significant long-term increases in load. These findings were used to inform a sensitivity analysis conducted within Xcel’s internal IRP modeling.
E3’s portfolio and reliability analyses were conducted in parallel with Xcel’s internal work to develop a forward-looking resource plan, testing the notion that an independent expert using advanced industry-standard methods would come to similar conclusions. E3 used RECAP for sophisticated loss-of-load-probability analysis and RESOLVE for optimal capacity expansion to design reliable, least-cost portfolios to meet carbon reduction goals, ultimately corroborating the findings in Xcel’s plan.
Publications
Integrated Resource Plan | California Public Utilities Commission, 2021
E3 has provided comprehensive technical and advisory support to the Energy Division of the California Public Utilities Commission (CPUC) in its administration of the state’s IRP program, mandated by the passage of SB 350 in 2016. E3 worked with CPUC staff to develop the structure of the IRP program including a three-year modeling cycle in which Staff prepares a system-wide plan that informs the California Independent System Operator (CAISO)’s annual Transmission Planning Process (TPP) and informs Load-Serving Entities integrated resource plans in alternate years.
E3 has helped the CPUC design an optimal “Preferred System Plan” for the combined utilities that incorporates the resource procurement plans of the LSEs and complies with the state’s clean energy policy requirements. In the 2020-2021 cycle, the policy requirements considered include a 60% RPS by 2030 and SB 100 by 2045, and a statewide greenhouse gas emissions target of 38 million metric tons (MMT) by 2030, while capturing the operational and reliability challenges encountered at high penetrations of variable renewable generation. E3 also supported the Energy Division’s development of a mid-term reliability order requiring the procurement of 11.5 GW of effective capacity by 2026. As part of this process, E3 evaluated dozens of scenarios reflecting alternative assumptions about load forecasts and electrification, resource costs, the availability of offshore wind and out-of-state wind, the ability of end-use loads to operate flexibly, and a variety of other input parameters.
Resource Adequacy in the Desert Southwest
In the aftermath of recent blackouts in California and Texas, the subjects of reliability and resource adequacy have risen to national prominence. Regulators and policymakers – as well as the general public and media – have taken a keen interest in these topics, and many have questioned whether the industry is adequately prepared to confront […]
Publications
Pacific Northwest Resource Adequacy Study | Pacific Northwest Utilities, 2018-19
E3 was retained by a consortium of public and private utilities in the Pacific Northwest to evaluate regional resource adequacy under a resource mix that, for both economic and public policy reasons, is transitioning toward higher levels of renewable energy and storage and away from coal. The study used E3’s RECAP model to examine the reliability of different portfolios and reliability contributions of individual resources such as wind, solar, hydro, and energy storage. The study examined both near-term (2030) and long-term (2050) systems. The results found that the Northwest region needs new capacity in the near term to meet growing loads and compensate for planned coal retirements. In the long term, E3 found that deep decarbonization could be achieved if sufficient firm capacity was retained for reliability during times of low wind, solar, and hydro generation. While wind, solar, hydro, and battery storage could provide reliability benefits to the system, replacing all carbon-emitting firm resources with these alternatives was found to be impractical due to the large overbuild required. Study sponsors included the Public Generating Pool (PGP), a consortium of publicly owned utilities in Washington and Oregon; Avista Corporation; Puget Sound Energy; and Northwestern Energy.
Publications
Long-Run Resource Adequacy Under Deep Decarbonization Pathways for California | Calpine, 2018-19
Building on E3’s prior work for the California Energy Commission, this study examines which resources will be needed to maintain resource adequacy in a future California electricity system that is deeply decarbonized and heavily dependent on renewable energy and electric energy storage to meet California’s economy-wide 2050 greenhouse gas reduction goal. Whereas E3’s previous work identified resources California should build to meet GHG and renewable energy targets, this study takes an in-depth look at electric system reliability requirements – and specifically which resources are needed to maintain acceptable long-run reliability in a cost-effective manner. After examining resource adequacy through loss-of-load-probability (LOLP) modeling across thousands of simulated years using its RECAP model, E3 found that achieving economy-wide goals does not require full decarbonization of the electricity sector and that the least-cost electricity portfolio to meet 2050 economy-wide goals includes very large quantities of solar + storage and retains 17 GW to 35 GW of firm natural gas capacity for reliability.
Publications
Study of Policies to Decarbonize Electric Sector in the Northwest I Public Generating Pool, 2017 – present
On behalf of the Public Generating Pool (PGP), a group of hydro-owning public power entities in Washington and Oregon, E3 completed a study exploring the effectiveness of a range of policy mechanisms to decarbonize the electric sector. This study used RESOLVE, E3’s optimal capacity expansion model, to develop optimized generation portfolios for the region through 2050 that capture […]
Publications
- Pacific Northwest Low Carbon Scenario Analysis – Technical Report
- Pacific Northwest Low Carbon Scenario Analysis
- Public Generating Pool_2018 Pacific NW Scenarios and Sensitivities_Final Report
- Climate Solutions_2018 Pacific NW Scenarios and Sensitivities_Final Report
- National Grid_2018 Pacific NW Scenarios and Sensitivities_Final Report
Modeling California’s 50 Percent Renewables Portfolio Standard
In early 2013, California’s five largest electric utilities needed to find out how grid operations would be affected if the state increased its Renewables Portfolio Standard (RPS) to 50 percent by 2030. They turned to E3 to examine operational and cost implications, explore how the utilities could reach the 50 percent RPS goal, and assess […]
Flexibility assessment for wind integration | Portland General Electric, 2014–15
After Oregon set renewable portfolio standard (RPS) goals of 25 percent by 2015 and 50 percent by 2040, Portland General Electric (PGE) turned to E3 to study the flexible generation capacity necessary to meet wind integration needs. Our studies considered the variability, uncertainty, and timing of renewable energy output, and we considered alternative resources such as flexible combined cycle gas turbine plants, frame and aero-derivative combustion turbines, reciprocating engines, and energy storage. Our analysis informed the resource procurement strategy in PGE’s 2016 integrated resource plan. The studies found that PGE’s need for within-hour operational flexibility is not a significant driver of the value or need for new gas resources, even at a 50 percent RPS.
Investigating a higher RPS for California | LADWP, PG&E, SMUD, SDG&E, and SCE, 2013–14
On behalf of California’s five largest electric utilities, E3 evaluated the challenges, costs, and potential solutions for achieving a 50 percent renewables portfolio standard (RPS) by 2030. Using our Renewable Energy Flexibility Model (REFLEX), we performed detailed operational studies of power system dispatch flexibility constraints under high levels of wind and solar generation. We found that achieving a 50 percent RPS is feasible and that California’s power system can remain reliable as long as renewable resources can be dispatched in response to grid needs. Our study recommended strategies for integrating higher levels of renewables, including greater regional coordination, renewables portfolio diversity, flexible generation capacity, flexible loads, and energy storage. We found that deploying these strategies would reduce the need to curtail renewables, lowering the cost of reaching 50 percent RPS.
Publications
Evaluating benefits of regional market participation | Multiple utilities, 2014–present
E3 has completed studies for more than 10 utilities on the costs and benefits of participating in the western energy imbalance market (EIM), a regional 5-minute balancing market that became operational in 2014. The EIM aims to lower costs for consumers and assist states in meeting renewable energy goals through more-efficient dispatch, which reduces the need to carry costly reserves and curtail renewable generation. For each study, we ran a production simulation grounded in a detailed representation of the utility’s system. Our work has informed decisions by PacifiCorp, Arizona Public Service, NV Energy, and other utilities to join the EIM, as well as Chelan County Public Utility District’s decision not to participate. Consistent with E3 findings, the California ISO estimated that participants saved more than $85 million in the 20 months after the EIM became operational. Several more studies for utilities are under way.
Publications
Modeling benefits of the Western EIM | WECC, 2011
The Western Electric Coordinating Council (WECC) engaged E3 to model the benefits of implementing an energy imbalance market (EIM) across the Western Interconnection. Working with WECC staff and many stakeholders, we modeled and compared simulated production costs for a scenario that maintained existing operational arrangements and a second scenario with a consolidated regional balancing market. The analysis found benefits from improved system dispatch, as well as from reductions in operating reserves needed to accommodate wind and solar variability. E3 devised an innovative technique to more accurately estimate the potential impact of the EIM, and pioneered applying “hurdle rates” to calibrate the GridView production simulation base case so that it more accurately reflected bidding and dispatch practices in the West. Since presenting our findings to WECC in 2011, we have developed similar EIM cost-benefit studies for 10 additional utilities.
Publications
Litigation: pipeline toll restructuring proposal | Canadian Association of Petroleum Producers, 2013–14
The Canadian Association of Petroleum Producers (CAPP) retained E3 to develop regulatory strategy and testify before the Canadian National Energy Board (NEB) in proceedings opposing TransCanada’s proposal to restructure tolls on the Mainline, which transports natural gas from western Canada to eastern markets. TransCanada had proposed restructuring tolls to maintain the line’s economic viability, as throughput declined due to soaring shale gas production in the northeastern U.S. The proposed change shifted fixed costs away from shippers, who were direct customers of the Mainline, toward producers, who were supplying gas to TransCanada’s own distribution network. Our alternative on behalf of CAPP offered a performance-based incentive with some pricing flexibility and balancing accounts that allowed TransCanada a reasonable opportunity to increase throughput and revenues and recover its investment. The NEB ultimately rejected TransCanada’s proposal in favor of CAPP’s, averting a shift of $300 million per year in fixed costs to western Canadian gas producers.
Assessing benefits and challenges of the Western EIM
he grid in the western U.S. is a patchwork of 38 balancing authorities. Each balances its loads and resources independently, exchanging energy through bilateral trades. This inefficient system is being strained with the growing presence of variable resources such as wind and solar. In 2011, the Western Electric Coordinating Council (WECC) engaged E3 to quantify […]
FULL E3 TEAM